Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies
نویسندگان
چکیده
Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.
منابع مشابه
Synthesis of nanostructured palladium, palladium oxide and palladium-palladium oxide nanocomposite by the gel combustion method and application as catalyst of hydrogen release
This paper presents a new gel combustion method to synthesize palladium nanoparticles, palladium oxide (PdO) nanoparticles and palladium-palladium oxide nanocomposites. In the proposed method, there are some effective parameters including palladium chloride concentration, polyvinyl alcohol (PVA) concentration, acid concentration, solvent composition and combustion temperature that their values ...
متن کاملSynthesize And Investigate The Austenitic Nanostructural Propertise
The austenitic stainless steel (SS) has been used as a material for building ultra high vacuum (UHV) chamber. Recently significant efforts have been concerned a comparing the standard cleaned for ultra high vacuum, passivity stainless. In this work Austenitic nanocomposites were synthesize by sol- gel method. The morphologies and topographies of the samples h...
متن کاملMicrowave Synthesis of Different Morphologies of Lead Ferrite Nanostructures and Investigation of Magnetic Properties
The lead ferrite (PbFe12O19) nanoparticles were prepared by a simple and short time microwave method. Lead nitrate, iron nitrate nine hydrate, surfactants, and ethylene glycol were used as precursor materials. The effect of surfactants on the morphology and particle size of the magnetic products was investigated. The prepared magnetic products were studied by X-ray diffraction, scanning electro...
متن کاملModular inorganic nanocomposites by conversion of nanocrystal superlattices.
Inorganic nanocomposites have been prepared by assembling colloidal nanocrystals and then replacing the organic ligands with precursors to an inorganic matrix phase. Separate synthesis and processing of the nanocrystal and matrix phases allows complete compositional modularity and retention of the superlattice morphologies for sphere (see scheme; top) or rod (bottom) assemblies.
متن کاملA dataset for preparing pristine graphene-palladium nanocomposites using swollen liquid crystal templates
Pristine graphene (G) has not received much attention as a catalyst support, presumably due to its relative inertness as compared to reduced graphene oxide (RGO). In the present work, we used swollen liquid crystals (SLCs) as nano-reactors for graphene-palladium nanocomposites synthesis. The 'soft' confinement of SLCs directs the growth of palladium (Pd) nanoparticles over the G sheets. In this...
متن کامل